

Theme: Physics

Abstract No: PTCOG-AO2025-ABS-0067

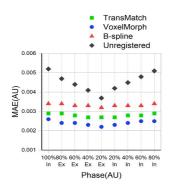
Abstract Title: Deep Learning-Based 4DCT Deformable Image Registration and

Carbon-Ion 4D Dose Calculation

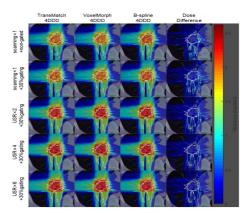
Author Name: Xiaoyan An

School of Future Technology, Xi'an Jiaotong University, China

Background / Aims:


- Respiratory motion deforms anatomical structures and compromises dose accuracy in carbon-ion therapy.
- Deep learning—based deformable image registration (DIR) enables faster and more accurate motion quantification compared to conventional methods.
- This study applies deep learning-based DIR to 4DCT registration and integrates the
 resulting deformation vector fields (DVFs) into carbon-ion 4D dose calculations to
 improve registration speed and accuracy.

Subjects and Methods:


- A total of 150 clinical lung 4DCT datasets were collected, with 120 for training, 20 for validation, and 10 for testing.
- Two deep learning-based DIR models, TransMatch and VoxelMorph, were used for registration and compared with the conventional B-spline DIR method.
- Registration performance was evaluated using MAE, DVF magnitude, and runtime.
- The resulting **DVFs** were applied to **carbon-ion 4D dose calculations** for further comparison.

Result:

- In terms of registration accuracy, the average MAE between warped and fixed images was 0.0036 for VoxelMorph, 0.0039 for TransMatch, and 0.0045 for B-spline, indicating that both deep learning models achieved higher accuracy than the conventional method.
- For registration speed, VoxelMorph averaged ~0.3 s, TransMatch ~1.2 s, and B-spline ~771 s per image pair, demonstrating that deep learning models improved efficiency by nearly three orders of magnitude.
- In **carbon-ion 4D dose calculations**, the choice of registration method significantly **affected** the final dose distribution under different motion scenarios.

Registration accuracy comparison

